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Abstract

An electronic nose utilising an array of six-bulk acoustic wave polymer coated Piezoelectric Quartz

(PZQ) sensors has been developed. The nose was presented with 346 samples of fresh edible oil

headspace volatiles, generated at 45°C. Extra virgin olive (EVO), Non-virgin olive oil (OI) and Sun-

flower oil (SFO), were used over a period of 30 days. The sensor responses were then analysed produc-

ing an architecture for the Radial Basis Function Artificial Neural Network (RBF). It was found that the

RBF results were excellent, giving classifications of above 99% for the vegetable oil test samples.
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Introduction

The quality control of odours and volatile compounds is important in many sectors

ranging from the chemical to the environmental [1]. With respect to fresh edible oils,

the investigation of food volatiles is increasingly of interest. The most widely applied

and established technique for their evaluation being Gas-Chromatography coupled to

Mass-Spectrometry (GC-MS) [2]. However, this equipment is expensive and requires

technical skill for satisfactory operation.

With this in mind, significant work has been carried out on inexpensive portable

instruments for online factory floor measurements. Much activity has taken place in

using arrays of chemical or bio-sensors with limited selectivity to the analyte being

measured. These not only allow good reversibility for array re-use, but through analy-

sis of the pattern of sensor responses, selectivity can also be gained. The sensing ar-

ray, known as an ‘electronic nose’ if the volatile being sensed has an odour [3], can be

based upon various different sensing elements. Metal Oxide Sensors (MOS) [4],

Metal Oxide Semi-Conductor Field Effect Transistor (MOSFET) [5], Conducting

Polymer Sensors [6], Piezoelectric Quartz Crystal (PZQ) (also known as Bulk Acous-
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tic Wave Sensors (BAW)) [7] and Surface Acoustic Wave Sensors (SAW) [8] have

all been used as electronic nose sensors.

Electronic nose

The system consists of an array of partially selective piezoelectric quartz crystals

(PZQ) sensors; the signals from these sensors may be processed using pattern recog-

nition techniques to ascertain the analyte under investigation. When excited by an al-

ternating current these devices resonate at a designed frequency. In PZQ sensors a

chemical or biochemical layer on the surface of the crystal allows extraction of an

analyte from a sample stream. The sensing is based on the change in device frequency

(frequency shift), which is proportional to the mass of material sorbed by the coating

on the crystal surface. The relationship between frequency shift and mass change was

derived by Sauerbrey [9] and may be calculated using Eq. (1).

�
�

f f
M

A
� �– .23106 2

o
s (1)

where �f is the change in frequency of the quartz crystal in Hz; fo is the fundamental

frequency of the quartz crystal in MHz; �Ms is the mass of material deposited or

sorbed onto the crystal in g and A is the area coated in cm2.

Apparatus

The PZQ based array has six sensors with fundamental frequencies of 10 MHz. Each

PZQ was coated with a commonly utilised gas chromatography stationary phase,

each containing a different functional group to allow limited selectivity. A reference

PZQ, allows for drift compensation.

PZ quartz crystal coating

The PZQ coatings used were OV-1, Carbowax 20M, OV-17, Diethylene glycol suc-

cinate, Silar 10C and OV-210. These were chosen to give a wide range of functional

groups and polarities. Dilute solutions (0.1% w/w) of each coating were prepared in a

volatile solvent, either chloroform (CHCl3) or an 80:20 v/v mixture toluene:methanol.

The solutions were applied to both sides of the crystal as the frequencies of the PZQ were

monitored so that frequency shifts were similar for each coating. The sensors were condi-

tioned prior to use by passing nitrogen over their surface for six h.

Sampling

10 mL of oil sample in a 125 cm3 Dreschel bottle was stored at 45°C for 30 min to allow

for headspace generation. During sampling the Dreschel bottle was kept at 45°C to allow

dynamic headspace analysis. A valve switches between the reference and sample gas,

flow rate for both was set at 17 mL min–1. Sampling was performed over a 3-min cycle,

1 min base line reading (reference) and 2 min response (sample). After each reading the
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sample chamber was purged with reference nitrogen for 5 min prior to the introduction of

the next sample. A total of 346 samples were taken, consisting of 112 Extra Virgin Olive

oil, 126 non-virgin Olive oil and 108 Sunflower oil samples.

Figure 1 shows a typical sensor response to an analyte, eight response sets are

shown for an OV-210 coated sensor reacting to sunflower oil. The response curves ap-

proximate to an open loop first order response. To enable a reasonably stable reading to

be made for classification, the response at 120 s was chosen. At this time the sensor has

almost reached equilibrium with the analyte, small experimental errors will have little ef-

fect on the frequency change observed. The actual equation for the sensor response is a

sum of two exponentials as given in Eq. (2) as described by Freeman [10].

�f(t)=a1(1–exp(–a2t))+a3(1–exp(–a4t)) (2)

where a1 to a4 are constants and t is time (s).

Feature extraction

The attributes of the gas (frequency change for each sensor) were calculated at 120 s

response, the classification methods were applied using the same feature sets. The

histogram of Fig. 2 shows the frequency shift for the 108 sunflower oil samples for

the OV-210 coated sensor, the mean frequency change is 38 Hz and the standard de-

viation is 6.2 Hz. The overall shape of the histogram may be likened to a gaussian

function as defined in Eq. (3). Similar analysis of the other sensors with all of the

analytes gives similar results.
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where i=1, 2,..., n (3)

where x is the mean of x, the analyte data set for that sensor and � is the correspond-

ing standard deviation.
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Fig. 1 Typical dynamic sensor response



Principal component analysis

Principal Component Analysis (PCA) is initially used here for visualisation of the

data. It is a commonly used multivariate technique [11, 12], which acts unsupervised.

PCA finds an alternative set of axes about which a data set may be represented. It in-

dicates along which axis there is the most variation; axes are orthogonal to one an-

other. PCA is designed to provide the best possible view of variability in the inde-

pendent variables of a multivariate data set. If the principal component scores are

plotted they may reveal natural clustering in the data and outlier samples.

Figure 3 shows the first two principal components in a PCA scores plot for 346

oil samples. The data set consists of 112 Extra Virgin Olive (EVO) oil, 126 Olive oil

(OI) and 108 Sunflower oil (SFO) samples. The data classes are clearly visible as

clusters. The non-virgin olive oil forms a tight cluster to the right of the plot with a

centre of (0.12, 0), the sunflower forms a less tight cluster to its left, centre (0.03, 0),
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Fig. 3 PCA plot for edible oil data

Fig. 2 Histogram of OV-210 sensor with sunflower oil



and there is a small degree of overlap between these two classes. The extra virgin ol-

ive oil data forms a loose cluster to the left of the plot, centre (–0.18, 0); there are sev-

eral outliers to this cluster some of which are closer to the sunflower cluster centre

than the extra virgin olive oil cluster centre. The Extra virgin olive oil should be eas-

ily separated for classification, however the overlapping region between the

non-virgin olive oil and the sunflower oil may cause some problems.

Radial basis neural network

Background

Radial basis neural networks were popularised by Broomhead and Lowe in the late

1980’s [13], they are quick to train and conceptually elegant. Evans and co-workers [14]

used a RBF network with data from an electronic nose to determine the quality of wheat.

The nose used an array of 32 conducting polymer sensors; the output was then pre-

processed before classification being made by the RBF network. The reported success

rate was 92% correct on a simple judgement between good and bad quality.

Overview

In an RBF network the feature space is normalised [0.1]n and is filled with M overlap-

ping radial based functions. The functions are continuous and reach a maximum

value at the centre of the specific region covered, but assume a near zero value out-

side of it. There are several types of radial functions, the most popular being the

gaussian. One way of describing an RBF network is that each radial function is a

fuzzy set membership function in the feature space. Any feature vector x, belongs to

one or more of the response regions, it is fuzzified by each radial basis function to the

appropriate membership of that region. The output layer of neurones maps the combi-

nation of fuzzy memberships into an output representing the overall membership for

a particular class. The weights from the hidden layer to the output layer form the

fuzzy rules to perform the joins between the sub-clusters of the hidden layer. The

masses must be trained to the appropriate activation to perform the correct mappings.
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Fig. 4 Architecture of RBF classification network



Architecture

The gaussian functions equation is as given by Eq. (3). The centre of each RBF is placed

on a small cluster that represents a subclass; therefore M functions cover the feature

space. The � or spread parameter may be adjusted so that covers a larger area; adjacent

RBF’s usually overlap to some degree. The neurones represented by the M centres make

the single hidden layer of an N-M-C feed forward artificial neural network as shown in

Fig. 4. The output layer C contains summing neurones with weighted connections to the

hidden layer M that must be trained in a similar way to a multi layer perceptron network.

Operation

The operation of a trained network consists of presenting an input vector x, the input

layer normalises the vector to [0.1]. The hidden layer to produce a scaled response

then processes the normalised vector. Any input vector close to one of the M neurone

centres will produce an output y that is greater than any other. The vector y=(y1,...,yM)

that is output from the hidden layer is processed by each neurone of the output layer.

It is usual to use a summing function (Eq. (4)) or an averaging squashing function

(Eq. (5)) rather than the multi layer perceptron sigmoid function.
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The output vector c is then tested against each of the target vectors that identify

the classes. The greatest output represents the highest activation and thus the input

vector x is recognised.

Training

Finding the centres, spread and weights of the hidden nodes constitutes training of an

RBF network. For optimal performance of an RBF network the position of the centres

and spread of the hidden nodes is critical. The full training algorithm for radial basis

function networks of Looney [15] allows adjustment of the hidden neurone centres v,

the spread parameter �2 and the output weights u.

Typically the steepest descent algorithm is used to train the output weights u, the

total sum-squared error, E over all the Q input vectors is minimised. t is the target out-

put vector that identify the classes. �m is initialised to 0.05, umj are set randomly to be-

tween (–0.5 to 0.5).

E t z� �� ( – )j

(q)

j

(q)

j=1

J

q=1

Q
2 (6)

J. Therm. Anal. Cal., 71, 2003

152 ALI et al.: RADIAL BASIS NEURAL NETWORK



If 
 is the network-learning rate, the steepest descent formula to optimise the

output weights u is
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Choice of architecture

The choice of the number of hidden nodes in an RBF may affect classification perfor-

mance [12, 14]. Typically a large number of hidden nodes are required to adequately de-

scribe the feature space with enough resolution to classify to any degree of accuracy. If

however sufficient knowledge of the system is known then a suitable architecture of the

network may be obtained from that. The variance for each sensor in the oil data has been

shown to correspond to a gaussian distribution, Fig. 2, and then if each hidden node in the

network corresponds to a sensor, the network is simply mapping fuzzy sensor responses

to classifications. The weight from any given input node to any given hidden node repre-

sents the mean frequency of that sensor for a given analyte. The spread parameter �2 is a

representation of the standard deviation of that sensor to all the oils and the weights from

the hidden layer to the output layer represent the fuzzy rules that map the analyte to the

classification. There are six sensors in this nose system, therefore six input nodes to be

used in the RBF network, each input normalises the crystal response. Six hidden nodes

represent the six sensors, producing a fuzzy membership for a given analyte. Three out-

put nodes represent the three classes of oil. The network architecture to be used therefore

is 6:6:3.

Table 1 RBF 6-6-3 network results

Class
Non-virgin

olive oil
Sunflower

oil
Extra virgin

olive oil
Total Correct/%

Non-virgin olive oil 42 0 0 42 100

Sunflower oil 1 33 0 34 97.06

Extra virgin olive oil 0 0 37 37 100

Total correct 112 99.13
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Results using RBF networks

Table 1 shows the results of using a 6-6-3 RBF network trained using 233 data sets
and tested on 113 sets selected randomly from the full data set. Only one sunflower
oil sample has been misclassified as non-virgin olive oil.

Discussion

The results demonstrate that the fuzzy analogy of the RBF network to the piezoelec-
tric quartz crystal response pattern is a valid one. The PCA scores plot of Fig. 3 shows
that the overlapping region of the non-virgin olive oil and sunflower oil could cause
difficulty correctly classifying data that lies in this area. The trained fuzzy mapping
of the RBF network misclassifies few points in the region of uncertainty.

Conclusions

The RBF network provides a simple and effective method of distinguishing between the
vapour signatures of the edible oils. The fuzzy analogy between the sensor response pat-
terns and the radial basis functions of the hidden nodes in the network provided an archi-
tecture that accurately modelled the piezoelectric crystal based electronic nose.
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